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1 Introduction  

 

1.1 Rosehips 

Family: Rosaceae 

Genus: Rosa 

Section used in the present thesis work: rugosa Thunb. and canina 

 

The genus Rosa contains over 100 species that are widely distributed mostly in Europe, 

Asia, the Middle East and North America, these species differ in their appearance and 

chemical composition (Nilsson, 1997). Rosa rugosa Thunb. and Rosa canina L. are the 

most important ones in the food industry in Europe. Rugosa hips resemble tomatoes 

with a 2-3 cm diameter and often a shorter height than their diameter, whereas canina 

hips are smaller and the mature hips are oval with a diameter of 1.5-2 cm (Al-Yafeai et 

al., 2018; Andersson et al., 2011& Henker, 2000). Rosehips have a rather long ripening 

period and usually stay attached on the bushes long after the first night frost, harvesting 

only once per year during autumn. In late summer and early autumn, the plants often 

bear fruits and flowers at the same time.  

During ripening, the hips start to change colour at sunny side from green via 

yellow-orange to dark red and sometimes even black, depending on the pattern of 

pigments such as carotenoids, flavonoids, or anthocyanins. In recent years, there has 

been a general increase in the interest in using plants as an alternative source of raw 

materials for pharmaceutical, food and cosmetic industries. Numerous studies confirm 

that many plant components are - in addition to be nutritionally valuable - also 

important in the prevention of civilization diseases (Youdim et al., 2000; Zafra-Stone 

et al., 2007). A number of epidemiological studies have shown that a high intake of 

fruit and vegetables is correlated with positive effects on human health, and decreases 
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the incidence of diseases such as cardiovascular diseases, cataracts and different 

cancers and other chronic diseases (Lampe, 1999; Gandini et al., 2000; Liu et al., 2000; 

Joshipura et al., 2001 & Liu et al., 2001).  For this reason, the food industry now focuses 

on developing new products with potential impact on public health and the nutritional 

status of the population.  

Recently, rosehips have been increasingly studied for their preventive 

properties. However, the available data advocating the medicinal importance of rose 

hip formulations are sparse and disorganized (Seema, 2012). Although R. rugosa is 

renowned for producing the most abundant and best tasting hips, most food products 

are based on the hips of R. canina although they are small compared with the rugosa 

hips (Barros et al., 2011). Several rosehip extracts have been released to the market as 

nutritive aids, health supplements, cosmetics and herbal remedies for the treatment of 

diseases, including cold, inflammation, osteoarthritis, rheumatoid arthritis and chronic 

pain in China (Guo et al., 2011). Moreover, some rosehips are used to prepare ‘Nypon 

soppa’, the traditional Swedish fruit soup. R. eglanteria hips infusion is popular in 

Europe as herbal tea. In the Tokat region of Anatolia, Turkey, rosehips are consumed 

as jam and fruit juice (Güne, 2010).  

Later, cosmetology research has proven the effect of rosehips oil in lowering 

skin pigmentation, reducing scars and stretches, acne management, rehydrating skin 

and rendering it supple and delaying wrinkling. Even the skin specialists are 

recommending the use of rosehips oil as skin vitalizing agent. Daels-Rakotoarison et 

al. (2002) & Halvorsen et al. (2002) reported that the antioxidant activity of rosehips 

extracts was higher compared with other fruit and berries. Several in vivo studies in 

animals revealed that rosehips extracts have a strong effect on body fat, plasma and 

biliary lipids (Gonzales et al., 1997& Ninomiya et al., 2007). In the same vein, the 
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investigations on anti-inflammatory activity have shown that lipophilic extracts of 

rosehips have a higher activity than hydrophilic extracts (Deliorman et al., 2007 & 

Wenzig et al., 2007).  

Although clinical studies to evaluate the effects of rosehips on humans suffering 

from osteoarthritis, rheumatoid and arthritis have shown positive results, studies are not 

yet adequate and need further proof (Christensen et al., 2007; Rossnagel et al., 2007& 

Chrubasik et al., 2008). In addition, rosehips extracts have anti-microbial effects on 

different bacteria (Kumarasamy et al., 2002), anti-mutagenic effects on Salmonella 

typhimurium and anti-cancerogenic effects in different in vitro studies on cancer cells 

(Karakaya & Kavas 1999 & Olsson et al., 2004). In the last few years, much more 

information on rosehips has become available, the physiological functions of rosehip 

fruits may be partly attributed to their abundance of bioactive compounds. Previous 

studies reported that rosehips contained higher amounts of various bioactive 

compounds than several other fruits and berries such as: flavonoids, tannins, 

carotenoids, phytoene, fatty acids and vitamins (particularly vitamins C, E and 

provitamin A) (Böhm et al., 2003 & Al-Yafeai et al., 2018). Furthermore, rose hips 

extract contained high contents of pectin (Al-Yafeai & Böhm 2018). 

 

1.2 Carotenoids  

Carotenoid pigments, responsible for the colour of a wide variety of foods, are 

mainly C40 lipophilic isoprenoids having a polyene skeleton, consisting of a long 

conjugated double-bond system. The basic skeleton may be modified in many ways, 

including cyclization, hydrogenation, dehydrogenation, introduction of oxygen 

functions, rearrangement, chain shortening, or combinations thereof, resulting in a 

multitude of carotenoids structures. Almost all carotenoids absorb light in the 400-500 
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nm range (Britton et al., 1995 & 2004).  As the number of conjugated double bonds 

increases, the absorbance wavelength of the chromophore also increases, therefore, its 

colour moves to longer wavelengths (bathochromic shift).  

Carotenoids are synthesized in all photosynthetic organisms (bacteria, algae and 

plants) as well as in some nonphotosynthetic bacteria and fungi. Although carotenoids 

are necessary to maintain normal health and behavior of animals, carotenoids are not 

synthesized by animals and so those found in animals are directly accumulated from 

food (Agarwal et al., 2012). Despite approximately 750 carotenoids have been reported 

(Britton et al., 2004), only those with an unsubstituted β-ring with an 11-carbon polyene 

chain have provitamin A activity. This structural requirement is satisfied by around 60 

carotenoids, which are subsequently transformed into vitamin A (Rodriguez-Amaya, 

2001).  Free and esterified carotenoid compounds can be found in the natural world and 

the free carotenoids can be divided into hydrocarbon carotenoids (known as carotenes), 

examples of the carotenes are α-, β-, γ-, ζ- carotene and lycopene. Oxygenated 

derivatives are called xanthophylls, which are esterified with fatty acids in matured 

fruits and vegetables, generating xanthophyll esters. Common oxygen substituents are 

the hydroxy (as in β-cryptoxanthin), keto (as in canthaxanthin), epoxy (as in 

violaxanthin) and aldehyde (as in β-citraurin) groups. Carotenoids can be acyclic (e.g., 

lycopene), monocyclic (e.g., γ-carotene) or dicyclic (e.g., α- and β-carotene) (Britton et 

al., 2004 & Krinsky & Johnson, 2005). 

 In nature, carotenoids mostly occur as (all-E)-isomers in plants. However, 

contents of (Z)-isomers may increase due to the isomerization of the (all-E)-isomers of 

carotenoids during food processing. Carotenoids are very unstable because they are 

highly unsaturated, being easily deteriorated by oxidative processes. Heat, light, drying 
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and structural differences are the prominent factors that affect the isomerisation of 

carotenoids in foods (Schieber & Carle, 2005). 

 

1.2.1 Biological activity of carotenoids  

 Carotenoids have been important in some diseases treatment and prevention, 

with antitumor properties and protection against free radicals, lipid peroxidation, 

oxidative damage to LDL-cholesterol, oxidation of essential polyunsaturated fatty acids 

and the UV light protection effects on cell membranes and tissues (Hu et al., 2006). 

Moreover, xanthophylls showed antioxidant power 10 times greater than β-carotene 

and 500 times higher than vitamin E (Lopez et al., 2004).  

The recent interest in specific carotenoids for different health-food purposes 

implicate that an increased knowledge of specific carotenoids is of high importance for 

health issues e.g. lycopene, for which rose hips have been proposed as a source of raw 

material (Böhm et al., 2003). Many of the carotenoids found in rosehips, such as 

zeaxanthin, lutein, lycopene and β-carotene, have been shown to have health beneficial 

effects (Bohn, 2008 & Andersson et al., 2011). Clinical and epidemiological studies 

have confirmed that diets rich in lycopene are associated with reduced risk of 

developing prostate, lung and ovary cancers and a lower incidence of chronic 

degenerative diseases and cardiovascular diseases (Rao, 2002 & Cramer et al.,  2001). 

Lutein and zeaxanthin are stored in our body in the retina and lens of eyes (Thane & 

Reddy 1997).  

The major provitamin A carotenoid in the Western diet is (β)-carotene but also 

(α)-carotene, (β)- and (α)-cryptoxanthin contribute to vitamin A supply and may 

prevent vitamin A deficiency. Vitamin A is an essential nutrient that maintains human 

health by controlling vision, immune system, reproduction, development and cell 
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growth (D'Ambrosio et al., 2011). During embryonic development, vitamin A is vital 

as both vitamin A excess and deficiency cause embryonic defects (Abu-Abed et al., 

2001). A mammalian embryonic development relies on the maternal circulating 

retinoids and the essential nutrient vitamin A is obtained only from the diet, maternal 

vitamin A intake and status directly affect fetal development. β-Carotene is currently 

used as dietary supplement due to its health-promoting effects (Bohn, 2008 & 

Andersson et al., 2011).  

 

1.2.2 Carotenoids as antioxidants  

The antioxidant properties of carotenoids are associated with their radical 

scavenging properties against two reactive oxygen species (ROS): singlet molecular 

oxygen (1O2) and peroxyl radicals (ROO•) (Everett et al., 1996). Furthermore, 

carotenoids are effective deactivators of electronically excited sensitizer molecules 

which are involved in the generation of radicals and singlet oxygen (Young  &  Lowe, 

2001). Quenching constants for 1O2 have been determined for a range of carotenoids in 

solution and reveal a clear relationship between structure of the carotenoid and the 

ability to quench this particular ROS by energy transfer (Baltschun et al., 1997). 

Carotenoids may interact with free radicals in three main ways, namely electron-

transfer (ET) (Eq. [1]), hydrogen atom transfer (HAT) (Eq. [2]) and addition of a radical 

species (Eq. [3]) (Britton et al., 1995). 

ROO• + CAR            ROO-+ CAR•          [1] 

ROO• + CAR           ROOH + CAR•        [2] 

ROO• + CAR           (ROO-CAR) •          [3] 
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The interaction of carotenoids with 1O2 depends largely on physical quenching which 

involves direct energy transfer between both molecules. The energy of singlet 

molecular oxygen is transferred to the carotenoid molecule to yield ground state oxygen 

and a triplet excited carotene. Instead of further chemical reactions, the carotenoid 

returns to ground state, dissipating its energy by interaction with the surrounding 

solvent. In contrast to physical quenching, chemical reactions between the excited 

oxygen and carotenoids are of minor importance, contributing less than 0.05% to the 

total quenching rate. Since the carotenoids remain intact during physical quenching of 

1O2 or excited sensitizers, they can be reused several fold in such quenching cycles. The 

efficacy of carotenoids for physical quenching is related to the number of conjugated 

double bonds present in the molecule, which determines their lowest triplet energy 

level. The most efficient carotenoid is the acyclic carotenoid lycopene, which 

contributes up to 30% to total carotenoids in humans (Baltschun et al., 1997).  

Beside singlet oxygen, peroxyl radicals are generated in the process of lipid 

peroxidation, and scavenging of this species interrupts the reaction sequence which 

finally leads to damage in lipophilic compartments. Carotenoids, as highly lipophilic 

molecules, are expected to be particularly effective scavengers of ROS within the 

hydrophobic portions of cell membranes and lipoproteins, their major transporters, 

reducing the possibility of oxidation of membrane structures and the overall risk of 

morbidity (Agarwal et al., 2012). 

Other colourless carotenoids being expected to find in rosehips are phytoene 

(PE) and phytofluene (PF). PE and PF are the common carotenoid precursors to the 

downstream carotenoid products found in plants. Therefore, PE and PF are conceivably 

present to some degree in a large array of carotenoid-containing foods (Britton et al., 

1995). 
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1.3  Vitamin E  

Vitamin E (C29H50O2) is a lipophilic antioxidant, the term vitamin E covers eight 

fat-soluble compounds (α-, β-, γ-, δ-tocopherol and -tocotrienol). The basic structure of 

vitamin E comprises a hydrophobic polyprenyl side chain with a polar chromanol ring. 

Tocochromanols with a fully saturated side chain are called tocopherols and those with 

an unsaturated at positions 3’, 7’ and 11’ of the side chain side are tocotrienols. The 

specific tocopherols and tocotrienols differ by number and positions of the methyl 

groups in the 6-chromanol ring, resulting in the α-, β-, γ- and δ-isomers (Munné-Bosch 

& Alegre 2002). 

 Tocopherols occur in mammalians, photosynthetic bacteria, fungi, algae and 

plants, but only photosynthetic organisms are able to synthesize them. The biosynthesis 

is initiated in the plant’s cytoplasm, but, except for this first step, its biosynthesis takes 

place in the plastids (Grusak & Dellapenna 1999 & Munné-Bosch & Alegre 2002). The 

content, composition and presence of tocopherols vary widely in different plant tissues. 

They can be found in seeds, fruits, roots and tubers and are usually present in the green 

parts of higher plants (Mene-Saffrane & Dellapenn 2010 Horvath et al., 2006).  

Vitamin E was first discovered as a necessary nutritional factor in pregnant rats 

for foetus viability (Evans & Bishop 1922).  Despite vitamin E’s importance in the 

human diet, dietary studies showed that the recommended daily allowance is often not 

met, so, improving its quantity and composition has become a target in crop breeding 

(Péter et al., 2016). In general, vitamin E is found in high concentrations in vegetable 

oils such as almond, safflower or canola oil or in other high-fat sources such as nuts, 

seeds or grains (Dellapenna,  2005). Food-grade canola oil, or 00-type rapeseed oil, has 

a high-quality nutritional composition similar to that of olive oil, and tocopherols are 

one of the main nutritionally relevant constituents (Péter et al., 2016).  
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1.3.1 Health effects of vitamin E 

α-Tocopherol is the most common form of vitamin E in human tissues and has 

long been considered as a protective factor, preventing inflammatory and degenerative 

processes in the liver during the exposure to a range of xenobiotics, environmental 

pollutants and dietary factors (Aboul-Soud et al., 2011). Furthermore, vitamin E is 

necessary in animal cells for different antioxidant functions, especially in cell 

membranes and plasma lipoproteins. It participates in preventing the proliferation of 

oxidative chain reactions, and it plays possible roles in atherosclerosis and cancer 

prevention (Lopaczynski & Zeisel 2001 & Bender & Mayes 2003). A number of 

epidemiological studies have shown that a high intake of vitamin E is correlated with 

positive effects on human health, and decreases the incidence of diseases such as 

cardiovascular diseases and different types of cancers (Albanes et al., 1995) as well as 

Alzheimer’s disease (Morris et al., 2005). 

 

1.3.2 Vitamin E as antioxidant 

Vitamin E (α-tocopherol) is an efficient lipid soluble antioxidant that functions 

as a ‘chain breaker’ during lipid peroxidation in cell membranes and various lipid 

particles, including low-density lipoprotein (LDL). It functions to intercept lipid 

peroxyl radicals (LOO●) and to terminate the lipid peroxidation chain reactions. It 

interacts with polyunsaturated acyl groups and protects polyunsaturated fatty acids 

from lipid peroxidation by scavenging lipid peroxy radicals and quenching ROS 

produced e.g., by photosystem II and during membrane lipid peroxidation (Brigelius-

Flohe & Traber 1999 & Krieger-Liszkay et al., 2008). During this process, tocopherols 

donate their phenolic hydrogen to lipid-free radicals, thus neutralizing the radical, 

terminating the autocatalytic lipid peroxidation processes and protecting cell 
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membranes. The resultant tocopheroxyl radical is relatively stable and under normal 

circumstances insufficiently reactive to initiate lipid peroxidation itself, which is an 

essential criterion of a good antioxidant (Kamal-Eldin & Appelqvist 1996 & Liebler, 

1993). 

LOO● + α-tocopherol–OH /LOOH + α-tocopherol–O● 

Furthermore, tocopherols are able to deactivate 1O2, which oxidizes, amongst others, 

membrane lipids, proteins, amino acids, nucleic acids, nucleotides and carbohydrates 

(Halliwell & Gutteridge 2015 & Straight & Spikes 1985). The chemical reaction of 

tocopherols with 1O2 results in the corresponding tocopherol quinones (and other 

derivatives), some of which have been shown to be potent antioxidants (Lass & Sohal 

1998 & Siegel et al., 1997). 

 

1.4 Vitamin C (Ascorbic acid) 

Vitamin C (Ascorbic acid, AA) is the most powerful water-soluble antioxidant 

in human blood plasma and acts as a regenerator for vitamin E in lipid systems. AA is 

an odorless, white solid, having the chemical formula C6H8O6 (Groff et al., 1995), being 

ascorbic acid and its first oxidation product, dehydroascorbic acid (DHA) (Gokmen et 

al., 2000). Therefore, the total vitamin C contents in fruit are the sum of these two 

biologically active compounds, AA and DHA (Nováková et al., 2008; Valente et al., 

2014).  Most physiological roles of AA are linked to its capability to be a reducing 

agent in a biochemical reaction (Tsaniklidis et al., 2014). AA significantly decreases 

the adverse effects of the ROS and RNS which cause oxidative damage to lipids, DNA 

and proteins (Padayatty et al., 2003).  

In addition to the antioxidant properties of AA, it also has major roles in 

hormone signaling and plant development, cell cycle, cell expansion, as a part of the 
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cellular redox system and as a cofactor for several important enzymes (Davey  et al., 

2000 & Smirnoff et al., 2001). An enhanced fruit AA pool has also been suggested to 

be associated with improved postharvest fruit quality in hard fruit species, such as pear 

and apple (Franck et al., 2003 & Davey et al., 2007). AA contributing to the antioxidant 

capacity of plant tissues, especially during different stressful environments through 

detoxify ROS and free radicals such as 1O2, hydroxyl radical (OH-), superoxide (O2-) 

and hydrogen peroxide (H2O2), produced during metabolic processes of photosynthesis 

(Smirnoff, 2011).  

Most plants and animals have the ability to synthesize vitamin C, only mammals 

including humans are unable to synthesize vitamin C. Therefore humans depend on 

exogenous sources of vitamin C including vegetables, fruits as well as food 

supplements and pharmaceutical preparations (Okiei et al., 2009). One of the most 

important features in rosehips is the high content of vitamin C. (Erenturk et al., 2005). 

Generally, rosehips are considered to be the most abundant natural source of vitamin 

C, the contents ranged between 200 and 2800 mg/100 g (Uggla et al., 2003). Thus, the 

medicinal value of rosehips depends largely on the vitamin C contents value of 

rosehips. Moreover, vitamin C terminates the lipid peroxidation chain reaction by 

donating an electron to the lipid radical and rapidly changes to the ascorbate radical. 

 

1.5 Bioaccessibility and Bioavailability 

As the potential health benefits of bioactive compounds such as carotenoids and 

vitamins become more and more clear, there has been a growing interest in 

determination of bioaccessibility and bioavailability of these compounds from plant 

foods. Bioaccessibility is defined as the fraction of a compound that releases from its 

matrix in the gastrointestinal tract and thus becomes available for intestinal absorption 
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(Reboul et al., 2006). On the other hand, the term “bioavailability” is usually defined 

as the fraction of a given compound or its metabolite that reaches the systemic 

circulation (Holst & Williamson 2008).   

However, human intervention studies to assess intestinal absorption are 

expensive, often invasive and of long duration. Static in vitro models based on human 

physiology were developed as simple, inexpensive and reproducible tools to predict the 

bioaccessibility of different food components, allowing large numbers of samples to be 

tested. Although one of the most relevant factors limiting the bioaccessibility of 

carotenoids at the pre-absorptive stages is the food matrix, Minekus et al., (2014) aimed 

to find a standardized processing for an in vitro digestion model.  

Simulated digestion methods typically include the oral, gastric and small 

intestinal phases, and occasionally large intestinal fermentation. These methods try to 

mimic physiological conditions in vivo, taking into account the presence of digestive 

enzymes and their concentrations, pH, digestion time and salt concentrations, among 

other factors. In recent years, there has been an increasing amount of literature on the 

effects of carotenoids and vitamin E from different natural sources on health.  

Knowledge of lipid digestion is important for understanding of absorption of 

lipophilic food ingredients. Dietary lipids enhanced secretion of bile salts and led to a 

stimulation of the activity of pancreatic lipase, which in turn increased micellarization 

capacity (Furr & Clark 1997). Pancreatic lipase facilitated the transfer of carotenoids 

from emulsified lipid droplets toward mixed micelles (Borel et al., 1998). Therefore, 

lipid digestion can be divided into two steps: (i) the hydrolysis and (ii) the 

micellarization. Hydrolysis of dietary triacylglycerols (TAGs) into diacylglycerols 

(DAGs), monoacylglycerols (MAGs) and free fatty acids (FFAs) is essential for their 

absorption by enterocytes and their incorporation into micelles (Mcclements & Decker 
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2009). The micellarization is a process to form molecular aggregates of 3-10 nm 

(micelles) through the action of bile salts on lipid particles (Johnson & Gerwin 2001). 

The micelles are composed of MAGs and FFAs, bile salts, phospholipids and lipid-

soluble compounds (Yonekur & Nagao 2007).  

 

1.5.1 Pectin and Bioaccessibility 

Although soluble fiber consumption has widely recognized health benefits, the 

impact of pectin and other dietary fibers on the bioavailability and metabolism of other 

nutrients, including lipids, is still under investigation. Some in vitro studies showed for 

pectin a potential to impact lipid digestion processes (Zhang et al., 2015) which can 

affect the carotenoid’s bioaccessibility. Pectic polysaccharides, generally referred to as 

“pectin,” are one of the most structurally complex and fascinating naturally occurring 

plant macromolecules.  

The molecular structure of both extracted and plant-located pectin is very 

diverse, varying with the physiological state of the plant and even between tissues in 

the plant (Bagherian et al., 2011, Christiaens et al., 2011 & Guo et al., 2014). The 

backbone of pectin is composed of segments of homogalacturonan (HG) and 

rhamnogalacturonan type I (RGI) and II (RGII) (Sila et al., 2009), which are esterified 

with a varying degree of methylation (DM) (Wicker et al., 2014).  HG is the most 

abundant pectic polysaccharide accounting for about 65% of the total pectin content of 

plant tissues (Mohnen, 2008). This linear structural element of pectin is a homopolymer 

of up to 200 units of α (1→4)-linked D-galacturonic acid (GalA) (Thibault et al., 1993 

& Zhan et al., 1998). RGI, representing approximately 20% to 35% of pectin 

(Albersheim et al., 1996), RGII, making up approximately 10% of pectin, is the most 

conserved and complex structural element of pectin. On the other hand, Fructozym P6-
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XL is a liquid, highly concentrated pectolytic enzyme mixture containing 

pectinmethylesterase (PME), pectinlyase (PL) and endopolygalacturonase (PG), and it 

is used to complete pectin degradation in juice for a good clarification and filterability.
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2 Objectives 

 

Although rosehips have more recently attracted attention because of their 

potential health benefits, there is little information about the change of antioxidants 

contents in different rosehip products as well as depending on the degree of ripeness, 

especially in rugosa hips. Furthermore, there is no study having investigated the 

bioaccessibility of carotenoids and vitamin E from rosehip raw materials as well as its 

products. 

Hence, the following specific aims can be formulated for the present thesis: 

 

 

 

Objective 1: 

 

 

 

The main objective of this doctoral thesis was to draw attention to R. 

rugosa. To this end, identification and quantification of carotenoids, 

vitamin E and vitamin C contents, as well as evaluation of 

antioxidants capacity in different products of canina hips and at 

different ripening times in rugosa hips was carried out. 

 

Objective 2: 

 

Determination of the bioaccessibility of carotenoids and vitamin E in 

rosehips (R. rugosa and R. canina), canina products (powder, jam, 

and puree) as well as tomato paste. 

Investigation of the effects of pectin, food processing and carotenoids 

properties on the bioaccessibility in selected samples of both rosehips 

and tomato paste. 
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3.1 Manuscript: I 

 

 

Characterization of carotenoids and vitamin E in R. rugosa and R. canina: 

Comparative analysis 

Ahlam Al-Yafeai,  Angelika Malarski and  Volker Böhm 

 

Food Chemistry 242 (2018) 435-442 
http://dx.doi.org/10.1016/j.foodchem.2017.09.070 

Accepted 13 September, 2017; Published 14 Septembers, 2017   
 
 
 

ABSTRACT: The hips of Rosa species have gained more attention in recent years due 

to their high contents of antioxidant compounds. This study was designed to compare 

rosehips of the two roses species Rosa rugosa and Rosa canina, including different 

products, on carotenoid contents, including phytoene and phytofluene, as well as 

vitamin E. The investigation allowed the identification and quantification of types of 

(Z)-isomers of lycopene and rubixanthin in both rosehips and focused also on 

isomerisation of both carotenoids. The carotenoid identification and quantification were 

done using HPLC-DAD and LC-MS/MS. The statistical analysis revealed significant 

differences (P < 0.05) in carotenoid contents and (P < 0.001) in vitamin E contents 

between different rosehips species. The HPLC analysis showed that carotenoid contents 

varied between rosehips species. The isomerization of (all-E)-rubixanthin and (all-E)-

lycopene using iodine-catalysed photoisomerisation showed that the (5′Z)-isomer 

gazaniaxanthin is the main (Z)-isomer of rubixanthin and the (13Z)-isomer is the main 

(Z)-isomer of lycopene. 

 

 

 

http://dx.doi.org/10.1016/j.foodchem.2017.09.070


Schedule of Manuscripts 

 
 

18 
 

Work share 

Ahlam Al-Yafeai: 

Identification and quantification of carotenoids and vitamin E 

in rosehip samples by HPLC, Identification and quantification 

of (all-E)- and (Z)-lycopene by HPLC, Fractionation and 

isolation of (all-E)-rubixanthin, Iodine isomerization of 

rubixanthin and lycopene isomers and identification by using 

HPLC and spectrophotometer, statistical analysis and  

preparation of the manuscript. 

Total share: 80% 

 

Angelika 

Malarski: 

LC-MS analysis of carotenoids 

Total share: 10% 

 

Volker Böhm: Correction of the manuscript 

Total share: 10% 

 

 

 

 

 

 

 

 

 

 



Schedule of Manuscripts 

 
 

19 
 

3.2 Manuscript: II 

 

 

In Vitro Bioaccessibility of Carotenoids and Vitamin E in Rosehip Products and 

Tomato Paste As Affected by Pectin Contents and Food Processing 

 

Ahlam Al-Yafeai and Volker Böhm 

 

Journal of Agricultural and Food Chemistry (2018) 66, 3801-3809 
DOI: 10.1021/acs.jafc.7b05855 

 
Accepted: 1 April, 2018 Published: 6 April, 2018 

 
 
 

ABSTRACT: Limited bioavailability of antioxidants present in food from fruits and 

vegetables matrices is determined by their low bioaccessibility due to the physical and 

chemical interactions of the antioxidants with the indigestible polysaccharides of cell 

walls. Therefore, this in vitro investigation aimed to assess the bioaccessibility of 

carotenoids and vitamin E from rosehips as well as from tomato paste and to investigate 

several aspects of effects of pectin contents and food processing on bioaccessibility. 

Following the addition of the enzyme mixture Fructozym P6-XL, the bioaccessibility 

of carotenoids from rosehips as well as from tomato paste significantly increased. The 

average relative increase in bioaccessibility from rosehips was lower for (all-E)-

βcarotene compared with (all-E)-lycopene and (all-E)-rubixanthin. In contrast, 

increases of bioaccessibility of α-tocopherol were comparable for rosehip samples and 

tomato paste. 
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Work share: 

Ahlam Al-Yafeai: 

 

Design of an in vitro model, quantification of carotenoids, 

vitamin E and pectin in rosehip products as well as tomato paste 

before and after simulated digestion model as well as after treated 

with Fructozym P6-XL by using HPLC, calculation and 

statistical analysis and  preparation of the manuscript. 

Total share: 90% 

 

Volker Böhm:  Correction of the manuscript 

Total share: 10% 
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3.3 Manuscript: III 

Bioactive compounds and antioxidant capacity of R. rugosa depending on degree of 

ripeness 

 

Ahlam Al-Yafeai, Peter Bellstedt and Volker Böhm 

 

 

 Antioxidants (2018) 7, 134 

DOI: 10.3390/antiox7100134 

Accepted: 25 September, 2018; Published: 3 October, 2018 

 

ABSTRACT: Maturity stage affects the bioactive compounds as well as the 

antioxidant capacity in the fruit. This study was designed to identify and quantify 

carotenoids contents as well as to evaluate vitamin E, vitamin C, antioxidant capacity 

and total phenolic compounds of R. rugosa hips at different degrees of ripeness. HPLC 

analysis showed different types of carotenoids at different stages of maturity of rugosa 

hips with significant differences (P ˂ 0.05), where the maximum concentration was 

observed at late harvesting. In rugosa hips investigated, only α-tocopherol was 

detected, the maximum concentration of both vitamin E and vitamin C was obtained 

in the orange hips with significant difference (P ˂  0.05). On the other hand, the highest 

hydrophilic and lipophilic TEAC values, as well as total phenolic contents, were 

determined in the mature hips (red colour) with significant difference (P < 0.0001) and 

(P < 0.001) respectively, whereas ORAC showed lower activity in the mature hips 

with significant difference (P ˂ 0.05). Late harvesting is recommended if a high 

content of carotenoids is desired, while harvesting should be carried out earlier if a 

higher vitamin E and vitamin C content is desired, which in turn affects the 

antioxidants capacity. 
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Work share: 

Ahlam Al-Yafeai: 

Identification and quantification of carotenoids and vitamin E 

in rugosa hips by HPLC, quantification of vitamin C, 

measurement of total phenolic compounds and antioxidant 

capacity, statistical analysis and preparation of the manuscript. 

Total share: 80% 

Peter Bellstedt: 
NMR analysis of rubixanthin 

Total share: 10% 

Volker Böhm: 
Correction of the manuscript 

Total share: 10% 
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4 Discussion  

 

 

4.1  Identification and quantification of bioactive compounds in rosehips 

As mentioned in the literature review, rosehips are a good source for meeting 

the increasing demand for natural raw materials in food and health-related products. 

Thus, depending on the product, the differences between species as well as during 

ripening of the rosehips must be considered. Due to the fact that the majority of the rose 

hips used for commercial products are harvested from wild populations of plants, 

specific quality aspects such as content of natural vitamins and antioxidants are difficult 

to maintain in the raw material. Although rosehips have more recently attracted 

attention because of their potential health benefits, there is little information about the 

changes of antioxidants properties in different rosehip products as well as at the 

different ripening times, especially in R. rugosa.  

 Our research was aimed to investigate authenticity of raw material used in 

rosehip products and also draw attention to R. rugosa because most products are based 

on the hips of R. canina, although they are small compared with the rugosa hips. 

Furthermore, studies of ripening times are of special interest because they allow the 

identification of the optimum point of maturity for harvesting which helps to improve 

levels of bioactive compounds. Although the damage and loss of free carotenoids 

during the saponification procedure could not be completely avoided, the saponified 

extracts were used for identification and quantification of carotenoids, because of the 

absence of esterified xanthophyll standards. The carotenoid pigments in rugosa hips at 

different ripening times and canina hips as well as canina products have been 

characterized and identified according to their chemical properties and 
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chromatographic and spectroscopic characteristics (UV-vis and MS). Due to the 

polarity, esterified carotenoids appeared latest in the chromatogram, by de-

esterification identification was possible as the xanthophylls appeared in the beginning 

of the chromatogram. Reversed phase HPLC chromatograms corresponding to the 

saponified extracts of raw materials of rosehips of R. rugosa and R. canina were almost 

comparable. 

 Our findings revealed that carotenoids in R. rugosa and R. canina rosehip 

extracts are (all-E)- and (Z)-β-carotene, (all-E)-α- and (all-E)-β-cryptoxanthin, (all-E)-

lutein, (all-E)- and (Z)-lycopene, (all-E)- and (Z)-rubixanthin, (all-E)-violaxanthin and 

(all-E)-zeaxanthin, being almost comparable with results of (Razungles et al., 1989 & 

Andersson  et al., 2011). The HPLC analysis showed variations in carotenoid contents 

with significant differences (P < 0.05) between these two species of rosehips, in 

different products as well as at different ripening degrees of R. rugosa. The variations 

in carotenoid contents have been influenced by ecotype and growing conditions, and in 

products were affected by type of processing. The low carotenoid contents in canina 

puree may vary under conditions of humidity and temperature during the processing. 

Whereas higher carotenoid contents in canina powder could be due to the higher dry 

matter. Andersson et al. (2011) found a straight correlation between weather and 

carotenoid contents in rosehips.  

Therefore, for practical implications of the quality of the raw material, it is 

important to harvest at proper time. To obtain high amounts of most carotenoids in 

rosehips, harvesting should be carried out after periods of warm and sunny weather. In 

this study, the carotenoid contents varied during the maturity of rugosa hips, the high 

concentration was achieved at mature stage (red colour) due to the accumulations of 

(all-E)-β-carotene, (all-E)-rubixanthin and (all-E)- and (Z)-lycopene. The present 
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findings seem to be consistent with Fraser et al. (1994) who showed that the 

concentration of carotenoids increased in tomato during ripening between 10- and 14-

fold mainly due to the accumulation of lycopene. The total carotenoid contents were 

lowest in the immature stage and showed a pattern of continually increasing 

accumulation until the final stage of maturity, as was observed for lycopene. This is 

likely a result of the higher contribution of lycopene to total carotenoids, lycopene is 

the major carotenoid in mature rosehips (Böhm et al., 2003 & Al-Yafeai et al., 2018). 

In the same vein, Staffan et al. (2008) have reported that the total content of carotenoids 

increased more than 10-fold during the eight weeks of ripening of R. spinosissima, 

whereas in other rose hip species the contents of carotenoids increased 1.3-2.6 times 

during the five-week study period. Interestingly, in rugosa hips a significant increase in 

the total carotenoid contents (1.0-fold) was observed at orange colour, whereas 1.5-fold 

was observed at mature stage. 

Phytoene serves as a precursor of lycopene from which several other carotenoid 

compounds are synthesized (Li & Yuan, 2013). In accordance with these explanations, 

the present study has shown a significant decrease in the phytoene contents within the 

maturity process. Even though, xanthophylls such as violaxanthin, lutein, zeaxanthin 

and rubixanthin and carotenes such as β-carotene and lycopene were found at all stages 

of maturation, concentrations tended to change at different ripening stages. Likewise, 

(all-E)-β-carotene was intensively increased in the orange-red stages of maturity.  In 

accordance with the present results, previous studies have demonstrated higher (all-E)-

β-carotene content in the red stage in all commercial cultivars of tomatoes (Kotikova et 

al., 2011).  

Such differences in the accumulation of (all-E)-β-carotene within ripening 

stages were probably due to the different functions. In immature fruits, (all-E)-β-
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carotene serves a primary function and is involved in the process of photosynthesis as 

a photoprotective antioxidant contained in the cores of both photosystems (Cazzaniga 

et al., 2016). Moreover, (all-E)-β-carotene may assume a secondary function and, along 

with lycopene, contributes to fruit colour (Kotikova et al., 2011).  

For more special identification and quantification, (all-E)- and (Z)-lycopene 

occurring in rosehips species as well as at different ripening times  have been 

characterized and identified in both unsaponified and saponified extracts by using an 

isocratic C30-HPLC method, based on comparison with reference compounds (all-E)- 

and (Z)-lycopene at 470 nm. Several peaks were subsequently identified as certain 

geometrical isomers according to the visible spectral data and retention times in HPLC. 

Corresponding to the maxima absorbance; a hypochromic shifts was observed (at most 

a 7 nm shift for λ2). The ultraviolet spectrum of (Z)-lycopene moves 5~10 nm towards 

the shorter wavelengths. Based on comparison with reference compounds the peaks 

were identified as (13Z)-, (9Z)-, (all-E)-  and (5Z)-lycopene respectively (Al-Yafeai et 

al., 2018), where (5Z, 5′Z)-lycopene was previously described (Honda et al., 2015). 

These findings are in agreement with Zhong et al. (2016) who referred that rosehips of 

R. rugosa contained three types of (Z)-lycopene.  Statistical analysis revealed 

significant differences (P < 0.05) in lycopene contents in both rosehips species as well 

as during rugosa hips ripening times.  

Our study provides further evidence for the effect of processing on the relative 

lycopene contents in each canina product, a decrease in the relative content of (all-E)-

lycopene was noted to 62% and 66% in canina powder and puree, respectively, 

compared with the relative content of (all-E)-lycopene in raw canina rosehips (69%). 

The decrease in relative (all-E)-lycopene contents is offset by an increase in relative 

contents of (Z)-lycopene isomers in canina products (Al-Yafeai et al., 2018). The 
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increasing of relative contents of (Z)-isomers of lycopene during food processing was 

previously investigated by Honda et al. (2017). On the other hand, (all-E)-lycopene 

contents showed an increasing pattern of accumulation based on total carotenoids 

during the ripening. A possible explanation for this might be the transition of 

chloroplasts into chromoplasts. In contrast, (Z)-lycopene showed the opposite trend of 

accumulation compared to (all-E)-lycopene, such that its concentration decreased based 

on total carotenoids in fruits across the ripening stages.  

 (5′Z)-Rubixanthin (gazaniaxanthin) (Figure 1) has been described as the main 

(Z)-isomer of rubixanthin as well as one of the important features that characterize R. 

rugosa compared to R. canina (Al-Yafeai et al., 2018). Gazaniaxanthin was first 

isolated by Schön, (1938) from flowers of Gazania rigens, where it occurred together 

with rubixanthin. The HPLC results obtained from the isomerization of (all-E)-

rubixanthin in CDCl3 by using sun light showed the spectra with maximum absorbance 

at 463.3 with retention times at 34.35 min. The UV spectrum is characterized by the 

appearance of a new maximum around 330-350 nm (cis-peak), ultraviolet spectrum 

moved 5-10 nm towards the shorter wavelengths and this finding is comparable to 

recent results (Honda et al., 2015 & Huawei et al., 2014). 

 

Figure 1. Structure of (5′Z)-rubixanthin. 

 

 

 The NMR data suggest that exposure of (all-E)-rubixanthin to sunlight result 

in an isomerisation of the very last double bond of the conjugated double bond system 

in the aliphatic chain of rubixanthin, which forms (5'Z)-rubixanthin. The 1H-spectra of 
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(all-E)-rubixanthin after exposition to sunlight exhibited two new signals that appeared 

in the aliphatic region. Since the multiple signals at 5.13 ppm belong to the terminal 

CH proton of (all-E)-rubixanthin, we speculated that the new signal at 5.17 ppm is 

indicative for the rearrangement of the 5′ double bond from E to Z configuration. Based 

on selective COSY and TOCSY spectra (Figure 2) that probe for neighbouring protons 

inside the same spin system, the second new signal of the light-induced isomer could 

be assigned to the CH2 group terminal to the 5′ double bond. In (all-E)-rubixanthin, 

both CH2 groups between the 5′ double bond and the CH group have similar 

chemical/electronic environment, resulting in a common signal at 2.14 ppm with an 

integral of 4.  Upon light-induced isomerisation, the signal of the CH2 group adjacent 

to the 5′ double bond slightly shifted downfield to 2.24 ppm. This shift can be attributed 

to the emerged spatial proximity of a CH3 group upon isomerisation of rubixanthin. 

These findings are consistent with those of Schön (1938) and Arpin & Liannen-Jensen 

(1968) who suggested that gazaniaxanthin is the corresponding 5′-cis isomer of (all-E)-

rubixanthin. 
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Figure 2: Comparison of 1D COSY and 1D TOCSY spectra selectively exciting 

the terminal CH group of the light-induced rubixanthin isomer, selective excitation is 

marked by a red flash. The two new signals in the aliphatic region of the proton spectra, 

belonging to the light-induced isomer, are highlighted with yellow boxes. The terminal 

region of the rubixanthin structure is given at the top, the (5′Z) double bond is marked 

in pink. 
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4.2 Identification and quantification of vitamin E 

 

The total amounts of tocopherols were not exceptionally high in the present 

study; α- and ɣ-tocopherol were the main isomers in canina raw material as well as in 

canina products, being comparable with Andersson et al. (2012). In contrast, α-

tocopherol was the main isomer of tocopherol in rugosa hips. This finding supports our 

previous research (Al-Yafeai et al., 2018). Statistical analysis revealed significant 

differences (P < 0.001) in vitamin E contents in both rosehips species as well as in 

canina products.  

On the other hand, α-tocopherol contents are likely to vary during the ripening 

period; the maximum concentration was achieved in the orange hips with significant 

difference (P ˂ 0.05). The present findings seem to be consistent with Andersson et al. 

(2012) who found that the amounts of total tocopherols and vitamin E activity decreased 

in rose hips during ripening, but the change was relatively small and limited. Collakova 

& Dellapenna (2003) have reported that only α- and γ-tocopherol were found in the 

fleshy parts of the rosehips. The tocopherols are suggested to be synthesized by the 

action of γ-tocopherol methyl-transferase to either γ- or δ-tocopherol, which can be 

further synthesised to α- and β-tocopherol, respectively. The tocopherol concentration 

in rosehips is related to the presence of oil (different fatty acids) (Asplund, 2002), which 

may contribute to the stability of berries at later stages of development. α-Tocopherol 

is the most potent tocopherol in quenching singlet oxygen (Zadernowski et al., 2003). 

Moreover, Falk et al. (2002) suggested that oxidative stress may induce increasing of 

the tocopherol levels in the plant. 

 

 



Discussion 

 
 

31 
 

4.3 Quantification of vitamin C 

As mentioned in the literature review, one of the most important features in 

rosehips is the high content of vitamin C (Erenturk et al., 2005). Generally, rosehips 

are considered to be the most abundant natural source of vitamin C, the contents 

ranged between 200 and 2800 mg/100 g (Uggla et al., 2003). The preliminary 

analysis of AA in rugosa hips at different ripening times revealed that the contents 

ranged between 798 mg/100 g and 1090 mg/100 g. It is encouraging to compare 

these findings with that found by Ercisli, (2007) who showed that contents of AA 

in the fresh fruits of rose species were between 706 mg/100 g and 974 mg/100 g. 

 According to the results, the amounts of AA varied greatly at three maturity 

stages of rugosa hips with a significant difference (p < 0.05). The highest contents of 

vitamin C were achieved at the half-ripe stage (orange colour) with 14% of increasing, 

whereas these contents decreased in the fully-ripe hips (red colour) by 16%. The present 

findings seem to be consistent with Zhang et al. (2006) who found that the AA contents 

increased at the beginning and middle of fruit growth and decreased after the 

development of fruits colour. Rousi & Aulin (1977) reported a decreasing trend in 

vitamin C contents, accompanied by a steady increase in the fresh weight of the berries.  

On the other hand, the decrease in vitamin C contents in plants may also be the result 

of the environmental oxygen level, the amount of light reaching the plants, variations 

in endogenous plant growth regulators and the temperature (Dogan & Kazankaya, 

2006).   

Further analysis between rosehips species showed that rugosa hips have high 

contents of vitamin C (798 ± 37 mg/100 g) compared to canina hips (423 ± 30 mg/100 

g) (Table 1), where the vitamin C contents in canina puree as well as in canina powder 

were 245 ± 14 mg/100 g and 864 ± 37 mg/100 g, respectively with (P < 0.001). Several 
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factors affecting the vitamin C contents in fruits include genotype, preharvest cultural 

practices, climatic conditions, fruit maturity, harvesting procedures and postharvest 

management (Porat et al., 2004 & Marcilla et al., 2006) as well as handling and storage, 

type of container (Naggy, 1980). The climate and environmental conditions affect also 

the vitamin C contents, increasing the acidity in the citrus fruits leading to increased 

vitamin C levels. High nitrogen fertilizer rates can lower vitamin C levels in citrus 

fruits. Proper potassium levels are also needed for a good vitamin C level. Areas with 

cool nights produce citrus fruits with higher vitamin C levels. In contrast, hot tropical 

areas produce fruit with lower levels of vitamin C (Padayatty et al., 2003).  

AA is synthesized from carbohydrates precursors. Therefore, a lower 

concentration of sugars in shaded fruit inside the canopy could contribute to lower 

levels of AA compared to sun-exposed outside fruit (Valpuesta & Botella 2004 & Zhan 

et al., 2013). On the other hand, Magwaza et al. (2013) reported a positive correlation 

between AA and sucrose and glucose, confirming the role of these sugars, especially 

glucose, as a primary substrate for AA synthesis pathway. Similarly, as mentioned 

above, vitamin C contents in different fruits are known to be modulated during fruit 

development. In tissues of citrus fruit, AA content and concentration is uneven, varying 

with the stage of fruit development. In fruit such as oranges, tangerines and grapefruits 

vitamin C contents decreased with maturity, indicating that early harvest or mid-harvest 

fruit have more AA than late-season fruit (Yang et al., 2011). 

 

4.4 Total phenolic compounds and antioxidants capacity  

Among the phytochemical compounds, phenolic compounds and flavonols are 

regarded as major functional food components. The antioxidant capacity of phenolic 

compounds is mainly due to their redox properties, which allow them to act as reducing 
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agents, hydrogen donors, singlet oxygen quenchers (Balasundram et al., 2006). 

Statistical analysis revealed significant differences in the TP contents (P < 0.0001) 

between rosehips species, products and at different maturity stages of rugosa hips. 

Interestingly, there was a positive correlation between TP and TEAC, where significant 

differences (P < 0.001) have been found in the TEAC activities in rosehips species, 

products and at the maturity stages of rugosa hips 

Table 1. Antioxidant capacity, total phenolic contents, and ascorbic acid in R. rugosa 

and R. canina as well as in canina products 

Sample 
Ascorbic acid 

[mg/100 g] 

H-TEAC 

[mmol/100 g] 

H-ORAC 

[mmol/100 g] 

Total phenolic 

 [mg/100 g] 

L-TEAC  

[mmol/100 g] 

R. rugosa  798 ± 37c 15 ± 1a   23 ± 0.3a 1327 ± 43a 4.4 ± 0.3 

R. C. R 423 ± 30b 25 ± 2b   26 ± 3.0a 2318 ± 89c 4.0 ± 0.2 

R. C. Pr. 864 ± 37d 73 ± 4c   93 ± 10b 5494 ± 41d 0.0 ± 0.0 

R. C. Pu 245 ± 14a 20 ± 2a   23 ± 3.0a 1829 ± 18b 0.0 ± 0.0 

   P < 0.0001   P < 0.0001   P < 0.0001 P < 0.0001 P  ≥ 0.05 

 

Data are expressed as mean ± SD (n = 3). One-way ANOVA with Student-Newman-

Keuls post-hoc test, different letters a/b/c/d within column indicate significant 

differences between samples (P ˂ 0.05). 

 

Canina raw hips and products showed a higher rate of TP as well as TEAC 

compared with rugosa hips. Likewise, the maturity stage affects, where the highest 

increases were achieved at the mature stage (red colour) with the rate of 21% for TP 

and 67% for TEAC. These results seem to be consistent with research done by Ilahy et 

al. (2011). TP accumulation in plants can be affected by genetic factors, environmental 

and cultural conditions and also various stresses (Parr & Bolwell 2009).    These factors 

can explain the data differences reported within the scientific studies. In the same vein, 

a decrease in ORAC values has been observed as the ripeness increased. These results 
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may be explained by the fact that Folin-Ciocalteu and the radical scavenging method 

ABTS share the same reaction mechanism (electron transfer), whereas the ORAC 

method is based on hydrogen atom transfer reactions. The present findings seem to be 

consistent with Rodríguez et al. (2016) who found the antioxidants capacity measured 

by ORAC significantly decreased as the palm fruit became ripe. 

On the other hand, an increase in antioxidant capacity of lipophilic extracts was 

observed with statistical significance (P < 0.0001) during the ripening stages of rugosa 

hips. The increase was progressed during maturity with (38%) in orange colour and 

with (450%) at full maturity (red colour). This finding confirms our previous results of 

accumulation of carotenoids during ripening.  

 

4.5 In vitro bioaccessibility of lipophilic micronutrients 

Bioavailability of carotenoids is associated with several influential factors, 

including the carotenoids properties, food matrix and food processing, ingested fat as 

well as physiological variations connected to digestion (Kotake-Nara & Nagao 2012). 

Therefore, knowledge about the influence of these factors on in vitro accessibility of 

carotenoids is fundamental, when evaluating the bioavailability potential of carotenoids 

from rosehip matrices based on in vitro results. Although rosehips have more recently 

attracted attention because of their potential health benefits, no study has investigated 

the bioaccessibility of carotenoids and vitamin E from rosehip raw materials as well as 

its products. In this context, the static in vitro release of carotenoids from food matrices 

and their subsequent incorporation into micelles is simulated by such models (Hedré et 

al., 2002; Reboul et al., 2006 & Werner & Böhm 2011). Mild heating in the initial 

phase, in addition to extending digestion times during the stomach phase and intestinal 
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phase, according to the standardized protocol of Minekus et al. (2014), were the main 

modifications in the new model. 

 

4.5.1 Initial phase 

Carotenoids are lipophilic micronutrients, located inside the chromoplast 

organelles in a specific substructure of crystalline, membranous or globular nature 

embedded in a cellular structure (Schweiggert et al., .2012). Crushing the raw materials 

helps to release carotenoids by reducing particle size and thus promotes 

bioaccessibility. Furthermore, amount and type of lipids seem to affect carotenoid 

bioavailability. In this study, 0.25 ± 0.05 mL of olive oil (main fatty acid: oleic acid 

(C18:1)) was added, followed by incubation for 1 h at 40 °C with shaking at 250 rpm.  

There are similarities between the attitudes expressed by Huo et al. (2007) and 

Salvia-Trujillo et al. (2013) who showed an increase in the bioaccessibility of lycopene 

and β-carotene with increasing fatty acyl chain length (C18:1 > C8:0 > C4:0) upon 

addition of oil to a salad meal. This was attributed to the greater solubilization capacity 

of mixed micelles containing long-chain fatty acids. Additionally, thermal processing 

with 40 °C facilitated the transfer of carotenoids from the cells to the olive oil droplets 

through weakened plant wall structure. Hedrén et al. (2002) reported that thermal 

treatments promoted the disruption of the food matrix, leading to an increase in β-

carotene bioaccessibility in carrot pieces. 

 

4.5.2 Carotenoids contents  

Although the contents of carotenoids and vitamin E in rosehip products as well 

as tomato paste were determined before in a simulated digestion model, this may not 

necessarily reflect their bioaccessibility. Undoubtedly, the untreated sample was used 
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to determine the stability of carotenoids during simulated digestion. It was calculated 

by the contents of substances in the digesta (solid residue + supernatant) in relation to 

contents in the undigested food. The undigested samples were extracted in the same 

way as supernatants and residues. Overall, the results of carotenoids and vitamin E were 

almost comparable to (Al-Yafeai et al., 2018 & Andersson et al., 2011), (all-E)- and 

(Z)-lycopene varied between (8 ± 2 mg/100 g to 5 ± 1 mg/100 g) and (8 ± 1 mg/100 g) 

in rosehip products respectively. In contrast, the concentrations of (all-E)-lycopene and 

(Z)-lycopene in tomato paste were 28 ± 3 mg/100 g and 10 ± 12 mg/100 g respectively.  

 

4.5.3 Vitamin E contents  

As previously reported, α- and γ-tocopherol were the main tocopherol isomers 

in R. canina rosehip raw materials and products, whereas in R. rugosa, only α-

tocopherol was determined. The total concentration of vitamin E varied between 32 ± 

3 μmol/100 g and 4 ± 0.1 μmol/100 g. On the other hand, vitamin E analysis in tomato 

paste revealed α- and γ-tocopherol but no tocotrienols and total concentration of vitamin 

E was 9 ± 1 μmol/100 g. 

 

4.5.4 Pectin contents  

 Determination of pectin contents may help in explaining the results.  In the current 

analysis, raw hips as well as products already had high contents of pectin. In this 

context, R. canina raw hips contained 2.0 ± 0.01 g GA/100 g compared with R. rugosa 

raw hips with 1.7 ± 0.01 g GA/100 g. The difference in pectin contents depends on the 

ecotype as well as on ripening time. A high content of pectin in canina products was 

comparable to Yildiz, & Alpaslan (2012). In contrast, tomato paste had a lower content 



Discussion 

 
 

37 
 

of pectin 0.4 ± 0.0 g GA/100 g. Pectin contents in samples were reduced significantly 

(P < 0.05) after being treated with the enzyme mixture Fructozym P6-XL. 

Moreover, the results also showed incomplete degradation of pectin in samples 

after treatment with Fructozym P6-XL, perhaps because fruit cell walls are often pectin-

enriched. Grassin & Fauquembergue (1996) reported that residual pectins and 

hemicelluloses in strawberries and raspberries bind to phenolic substances and proteins 

during processing and storage, resulting in irreversible complexes that enzymes cannot 

cleave. On the other hand, different relative degradation rates in the treated samples 

were observed. A possible explanation for this might be the type of carbon source and 

structure of pectin substrates, influencing the enzyme activity profile. PL prefers to 

hydrolyze high-esterified pectin.  In contrast, PG is a pectin-depolymerizing enzyme, 

cleaving α-(1−4)-glycosidic linkages in polygalacturonic acid by trans-elimination, 

exo-PG and endo-PG more often cleave low-esterified pectin. Furthermore, PME 

catalyzes de-esterification of methoxyl groups of pectin forming pectic acid. The 

enzyme acts preferentially on a methyl ester group of a galacturonate unit next to a 

nonesterified galacturonate unit. 

 

4.5.5 Pectin and Bioaccessibility 

Although soluble fiber consumption has widely recognized health benefits, the 

impact of pectin and other dietary fibers on the bioavailability and metabolism of other 

nutrients, including lipids, is still under investigation. Some in vitro studies showed for 

pectin a potential to impact lipid digestion processes (Zhang et al., 2015) which can 

affect the carotenoid’s bioaccessibility.  Following the addition of the enzyme mixture 

Fructozym P6-XL, the bioaccessibility of carotenoids from rosehips significantly 

increased. The average relative increase was lower for ((all-E))-β-carotene (+21%) 
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compared with ((all-E))-lycopene (+50%) and (all-E)-rubixanthin (+48%). In contrast, 

in tomato paste, a strong evidence of bioaccessibility of individual carotenoids was 

found after treatment with Fructozym P6-XL (P < 0.001). Likewise, adding pectin to 

tomato paste caused significant decrease of the bioaccessibility of (all-E)-lycopene (-

68%), (Z)-lycopene (-60%) and (all-E)-β-carotene (-49%), these results match those 

observed in earlier studies (Cervantes-Paz et al., 2016). 

Pectin can affect bioaccessibility through two mechanisms, the passive 

absorption in the small intestine may be blocked as a result of pectin action on the lipids 

and bile salt molecules, thereby avoiding micelle formation with carotenoids. 

Furthermore, pectin increases the viscosity of the intestinal content. Thus, absorption 

of antioxidants was reduced perhaps due to lower activity of enzymes and increased 

difficulty in contacting intestinal enterocyte (Xu et al., 2015). The effects of pectin on 

bioaccessibility and bioavailability depend on different factors; such as pectin degree 

of methylation (DM), distribution of nonmethylesterified galacturonic acid residues, 

molar mass, linear charge density and hydrophobicity. Kyomugasho et al. (2015) 

showed that in regions containing pectin with a higher DM, cell adhesion is probably 

weaker, and thus, tissues are more easily disintegrated into smaller particles. On the 

other hand, pectin with a lower DM is more strongly bound in cell walls, and thus, 

regions rich in low DM pectin are not easily disrupted resulting in larger particles. In 

general, high-DM pectin increases the lipolysis, bile salt binding, and micellarization 

of polar carotenoids (Cervantes-Paz et al., 2016).  However, low-DM pectin can reduce 

the levels of calcium involved in the lipolysis and generation of lipid digestion products 

for micelle formation (Kyomugasho et al., 2015). 
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4.5.6 Effects of food processing on bioaccessibility of carotenoids  

 

Food matrix structure is one of the most important factors that affect the bioaccessibility 

of carotenoids. The most interesting finding was that there were differences in the 

efficiency of carotenoids micellarization in the two rosehip species investigated. The 

bioaccessibility of total lycopene in rugosa hips was higher than that in canina hips. 

These findings are supported by Stinco et al. (2012). As mentioned above, pectin food 

matrix-related factors may hinder carotenoids bioaccessibility. R. canina hips had 

higher pectin contents compared with R. rugosa hips, this could be a reason for the 

relatively low carotenoids bioaccessibilities of the canina hips.  

In addition, samples also include three different products of R. canina (powder, 

jam and puree). Results for (all-E) and (Z)-lycopene were highly variable in different 

products, whereas the accessibilities of (all-E)-β-carotene and (all-E)-rubixanthin were 

almost comparable. The order of lycopene bioaccessibilities was determined to be 

R.C.Pr > R.C.Ja ≥ R.C.Pu. A possible explanation for this might be related to food 

processing. Food processing with breaking of the natural matrix may lead to higher 

bioavailability (Parada & Aguilera 2007). Consequently, the effect of particle size 

reduction is expected to arise from disintegration of the food matrix and reduction in 

the potential plant cell wall barrier toward digestion (Bohn et al., 2015). Accordingly, 

the solubility is enhanced by increasing the surface area for dissolution, thus improving 

activity of the enzymes and permeation of bile salts.  

The positive effect of food processing on carotenoid bioaccessibility is in 

accordance with in vivo studies on carotenoid bioavailability (Van Het Hof et al., 2000) 

and confirms that eating processed vegetables improves carotenoid bioavailability. 

Interestingly, further comparison between the bioaccessibilities of individual 
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carotenoids in rosehip and tomato paste showed that tomato paste had a higher 

carotenoids bioaccessibility. The present findings seem to be consistent with the results 

of an in vivo study (Unpublished data) (Brose, 2010). 

 Furthermore, Schweiggert & Carle (2017) showed tubular or globular-tubular 

chromoplasts for hips of R. rugosa, partially containing lipid-dissolved but mostly 

liquid-crystalline carotenoids. Consequently, the globular-tubular deposition form 

might be more favorable than the protein-complexed and solid-crystalline forms, 

respectively. In contrast, crystalloid chromoplasts were previously described in red 

tomato (Schweiggert et al., 2011). The low bioaccessibility was affected by the 

deposition of carotenoids in protein pigment complexes and crystalline aggregates, 

respectively (Schweiggert et al., 2014). On the other hand, Zhou et al. (1996) have 

previously reported that the crystalline state of carotenoids was associated with their 

poor bioavailability. These two reasons as well as high pectin contents in rosehips may 

explain the relatively low bioaccessibility in rosehips compared to tomato paste. 

According to Cooperstone et al. (2015) lycopene was markedly more bioavailable from 

tangerine than from red tomato juice, consistent with a predominance of (Z)-lycopene 

isomers and presence in chromoplasts in a lipid dissolved globular state. These reasons 

in addition to the profile structure of cis-isomers could be a possible explanation for the 

more efficient micellarization of cis-isomers compared to trans-isomers. 

 

4.5.7 Effect of carotenoid properties  

Regardless of the sample type or the treatment, the carotenoids showed different 

bioaccessibility. Overall, the bioaccessibility decreased in the following order: (all-E)-

rubixanthin ≥ (all-E)-β-carotene > (Z)-lycopene > (all-E)-lycopene. Carotenoid 

hydrophobicity and transfer efficiency were inversely related. Xanthophylls are more 
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efficiently transferred into micelles and thus show a higher bioaccessibility than the 

hydrocarbons β-carotene or lycopene (Schweiggert et al., 2012). In agreement with this 

hypothesis, the micellarization of rubixanthin increased after treatment with Fructozym 

P6-XL in all rosehip samples. However, an unexpected result was observed in the 

present study, the bioaccessibility of (all-E)-β-carotene was greater than that of (all-E)-

rubixanthin in all untreated rosehip samples. A possible explanation for these results: 

the hydrophobicity is not the only factor affecting the carotenoids bioaccessibility. In 

the same vein, Sólyom et al. (2014) showed the following order of bioaccessibilities: 

β-carotene > γ-carotene > lycopene ≈ β-cryptoxanthin > rubixanthin after delivery of 

carotenoids to an in vitro digestion model.  

Furthermore, (all-E)-lycopene had a significantly lower bioaccessibility 

compared to (all-E)-β-carotene in all samples with different treatments. These findings 

seem to be consistent with other research (Zhou et al., 1996). Lycopene is more 

lipophilic than β-carotene because of its acyclic structure without a β-ionone ring. On 

the other hand, the interactions between carotenoids have been demonstrated. During 

micellar formation, the competition between lycopene and β-carotene has been 

recorded (Fernández-García et al., 2007). The favored β-carotene transfer into the 

micelles could also hinder lycopene incorporation. Further analysis showed that the 

efficiency of micellarization of (Z)-lycopene was significantly greater than that of (all-

E)-lycopene. These results match those observed in earlier studies by Ferruzzi et al., 

(2006) who found that the profile structures of cis-isomers were micellarized more 

efficiently than trans-isomers. The (Z)-lycopene isomers are less likely to crystallize, 

more oil/hydrocarbon soluble, compared to (all-E)-lycopene. During a simulated in 

vitro digestion model, the recovery rates of carotenoids were determined, the rates of 
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stabilities were >70% with average 80%. Oil droplets were removed from the aqueous 

fraction by filtration, resulting thus in a loss in carotenoids in supernatant and residue. 

 

4.5.8 Vitamin E Bioaccessibility 

Vitamin E bioaccessibility significantly increased after treatment with Fructozym; there 

are similarities between these findings and earlier observations with carotenoids. The 

stability of vitamin E during simulated digestion was >78% and averaged 82%. In 

agreement with Reboul et al. (2006), the bioaccessibility of tocopherols from different 

foodstuffs was highly variable. As mentioned above, the bioaccessibility of nutrients 

depend on the physical properties of the food matrix. 

 Dietary tocopherols are mostly present in the free forms (except in fortified 

food). Dietary carotenoids may be present as protein-bound, ester and free forms. This 

may explain the higher bioaccessibility of vitamin E compared with lycopene. These 

results match those observed in earlier studies (Reboul et al., 2006). Although the study 

has successfully gone some way toward enhancing our understanding of correlations 

between the pectin contents, food processing and bioaccessibility, it has raised some 

new questions in need of further investigation. Our results confirm that pectin has a 

major effect on the bioaccessibility, significantly increasing the bioaccessibilities of 

carotenoids and vitamin E after pectin hydrolysis by using Fructozym P6-XL. 
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5 Summary 

 

 

5.1  Background 

The hips of Rosa species have received more attention in recent years due to 

their high contents of antioxidants. The genus Rosa contains over 100 species, which 

are widespread and different in their appearance as well as in the chemical composition. 

Indeed, the maturity stage affects bioactive compounds and antioxidant capacity in 

rosehips. On the other hand, the limited bioavailability of antioxidants present in food 

from fruit and vegetable matrices is determined by their low bioaccessibility due to the 

physical and chemical interactions of the antioxidants with the indigestible 

polysaccharides of cell walls. 

5.2  Objectives 

Identification and quantification of carotenoids, vitamin E and vitamin C as well as 

investigation of biological activities in both rugosa and canina hips. A second goal was 

to study the factors that influence the bioaccessibilities of carotenoids and vitamin E in 

rosehips and tomato paste. 

5.3  Methods 

Carotenoids and vitamin E were extracted in both rosehips species, the identifications 

were performed by comparison with external standards or were tentatively identified 

by comparison of retention times and DAD absorbance spectra as well as mass spectra. 

The quantification was carried out by using 5-point calibration curves of external 

standards. Antioxidant capacity and vitamin C were determined by using 

spectrophotometric techniques using the methods having been described in the related 

manuscript. For the second objective, the static in vitro digestion model was designed 
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to study the effect of pectin on bioaccessibility. The experiment was conducted in three 

groups depending on the pectin contents: (i) control sample, (ii) sample treated with 

Fructozym P6-XL, (iii) sample with added pectin. The simulation of the digestive 

process involves a three-step procedure simulating mouth/stomach/small intestine, with 

conditions generally based on physiological conditions in vivo. 

5.4  Results 

  Study 1: 

The HPLC analysis showed that carotenoid contents varied between rosehips species 

as well as at different stages of maturity of rugosa hips, statistical analysis revealed that 

rugosa hips had higher contents of carotenoids compared with raw canina hips with 

significant differences (P < 0.05). On the other hand, maturity stage affects the bioactive 

compounds in rugosa hips, the maximum concentration was observed at late harvesting. 

The high concentration of lycopene appeared to be a characteristic of the Rosa species, 

the ripening process of hips is associated with increase in (all-E)-lycopene content with 

significant difference (P ˂ 0.001). In contrast, the maximum concentration of (Z)-

lycopene was achieved in the green hips with 40% of the whole contents of carotenoids. 

HLPC analysis of vitamin E showed that α- and ɣ-tocopherol were the main isomers in 

canina hips, while rugosa hips had only α-tocopherol. Statistical analysis showed a 

significant difference in vitamin E content (P < 0.001) between different hip products 

with the maximum concentration of each vitamin E isomer in the orange hips with 

significant difference (P ˂ 0.05). In the same way, rosehips are considered to be the 

most abundant natural source of vitamin C, rugosa hips had a higher concentration of 

vitamin C compared with canina raw hips with significant difference (P ˂ 0.0001). 

Likewise, depending on the maturity stage of rugosa hips, the maximum concentration 
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was achieved in the orange hips with significant difference (P ˂ 0.05). The highest 

hydrophilic and lipophilic TEAC values were determined in the mature hips (red 

colour) with significant difference (P < 0.0001) as well as total phenolics contents with 

(P < 0.001), whereas ORAC showed lower activity in the mature hips with significant 

difference (P ˂ 0.05). 

  Study 2: 

 The second major finding was that studying the bioaccessibility, following the 

addition of the enzyme mixture Fructozym P6-XL, the bioaccessibility of carotenoids 

from rosehips as well as from tomato paste significantly increased (P ˂ 0.05). The 

average relative increase in bioaccessibility from rosehips was lower for (all-E)-β-

carotene compared with (all-E)-lycopene and (all-E)-rubixanthin. In contrast, increases 

of bioaccessibility of α-tocopherol were comparable for rosehip samples and tomato 

paste. 

 

5.5 Conclusion 

This research extends our knowledge of rosehip, confirms previous findings and 

contributes additional evidence that suggests rosehip as a good source of carotenoids, 

vitamin E and vitamin C. The variations in contents of these bioactive compounds have 

been influenced by ecotype, growing conditions and the degree of the maturity, and in 

the products were affected by the type of processing. Higher contents of carotenoids 

and vitamin C were observed in rugosa hips compared with canina raw hips. On the 

other hand, this study has gone some way towards enhancing our understanding of the 

factors that affect the bioaccessibilities of carotenoids and vitamin E. 
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